

April 2016

Institute of Interdisciplinary Research

Working Papers in Interdisciplinary
 Economics and Business Research

W
o

rk
in

g
P

ap
e

r
29

The Formalization of a Generic Trading Company
Model Using Software Agents as Active Elements

Dominik Vymětal, Sohei Ito

Working Papers in Interdisciplinary Economics and Business Research

Silesian University in Opava
School of Business Administration in Karviná
Institute of Interdisciplinary Research
Univerzitní nám. 1934/3
733 40 Karviná
Czech Republic
http://www.iivopf.cz/
email: iiv@opf.slu.cz
+420 596 398 237

Citation

VYMĚTAL, D. and ITO, S., 2016. The formalization of a Generic Trading Company Model Using
Software Agents as Active elements. Working Paper in Interdisciplinary Economics and
Business Research no 29. Silesian University in Opava, School of Business Administration in
Karviná.

Abstract

Dominik Vymětal, Sohei Ito: The Formalization of a Generic Trading Company Model Using Software
Agents as Active Elements

Business environment simulation often requires unique knowledge based on the modeler’s
experience. However, even experience based simulation models need some extent of
abstraction and formalization in order to achieve results that are expected. Business process
simulation models usually incorporate several essential components such as the model of
trading functions that reflect customer behavior, procurement functions for modeling
company inputs and the optimization of production & logistics functions. When modeling
management decisions, a management function model with a loopback to company economic
outputs is also needed. As a solid foundation of such complex business simulations, an abstract
multi-agent architecture of a trading company model is proposed. The abstract model is
inhabited with active entities – software agents and a method of registering their actions in a
simulation run log is proposed. This approach combines the basic notions of abstract agent
architectures with process mining methodology. Finally, the correctness of our software-agent
system is verified and a validation is provided showing that the proposed system fits the real
data company outputs.

Key words:

formal models, business process simulation, software agents, process mining, behavioral
patterns

JEL: C63, C88, D29, M15

Contacts

Dominik Vymětal, Institute of interdisciplinary research, School of Business Administration
in Karviná, Silesian University in Opava, Univerzitní náměstí 1934/3, Karviná, Czech Republic,
e-mail: vymetal@opf.slu.cz

Sohei Ito, Department of Fisheries Distribution and Management, National Fisheries
University, 2-7-1 Nagata-Honmachi Shimonoseki, Yamaguchi, Japan, e-mail: ito@fish-u.ac.jp

1

Introduction

Open economies, globalization, price minimization with product quality maximization and
other trends result in keen competition due to significant increases in domestic and
international business. It is obvious that if consumer demand abates, it may instantly cause
serious troubles for any company, which enforces rapid management decisions. However,
situations in which management has no relevant data to support their decisions are not rare.
Various computer simulation models exist in the domain of artificial intelligence, which
facilitate or even model management decision making. Simulations supporting decision
support systems are typically based on business process modeling, a topic that has been
treated by many researchers (Barnet, 2003; Bucki and Suchanek, 2012; Ericsson and Penker,
2000; Sperka et al., 2013; Suchanek and Vymetal, 2011; Van der Aalst, 2004). While analytical
modeling approaches are based mostly on mathematical theories (Baden-Fuller and Haefliger,
2013; Liu and Triverdi, 2011), many research perspectives are based on experimental
simulations using various generic business process models. Most business process modeling
methods concentrate on the process and control flow (ARIS, 2000; BPMN, 2001). An
alternative approach – value chain modeling based on e3-value method (Gordijn and
Akkermans, 2002) and the REA (Resources, Events, Agents) ontology (Dunn, Cherrington and
Hollander, 2004; Gailly and Poels, 2007; Hruby, 2006; Ito and Vymetal, 2013; McCarthy, 1982;
Weigand and Elsas, 2012) can be seen as a complement to process control flow modeling.

However, typical business and value chain modeling methods tend to omit the variability
of internal relations in business companies and within the markets. Here we have in mind, the
forces of social interaction. The role of social forces within a company organization has already
been described in many publications; here we mention a comprehensive one presented in
McFarland and Gomez (2014). Social interaction elements in business modeling emerge in
various business negotiations, on both the sales and the procurement side, specific
management methods, disturbances from the company and in the market environment
affecting the company results. This challenge in modeling can be met by incorporating local
intelligence elements in the simulation model, leading to a new modeling paradigm – the
multi-agent modeling approach (Macal and North, 2006; Odell, 2010; Wooldridge, 2009).
Software agents are here defined as modeling entities that can act to some extent
independently using their own targets, communicating with each other and coordinating their
actions in order to achieve their aims and targets.

When comparing system modeling at the ERP design stage to simulation modeling, we can
see differences. First, ERP architects will always use some design compromises in order to
achieve speed and to use system resources in an economical way. Such compromises do not
hinder the implementation of software but cause semantic differences among various
software packages. Second, modeling at design stage is usually finished at a concept level,
leaving the concrete steps of ERP functional design and parameterization to further project
steps. Third, the ERP system model at the design stage depicts static properties of the system
to be implemented.

Differently from system design modeling, business environment simulation requests
unique knowledge of the target business processes rather than modeling purely based on end
user needs and designers’ experience with similar projects. While analytical modeling focuses
on precise mathematical tools that often require specific treatment of process input data, the
experimental simulations are often based on the experience of modelers. However, even
experience based simulation models need some extent of abstraction and formalization in

2

order to achieve expected results. We can observe that simulation models generally
incorporate several essential components such as a model of trading function reflecting the
customer behavior, procurement function that models company inputs and production and
logistics optimization function. When modeling management decisions, a management
function model with a loopback to company economic outputs is also needed. After the
simulation model is designed, the verification of the model structure and possibly the
validation of model outputs using real input data are necessary before it can be deployed in a
company.

However, the unique knowledge mentioned above often brings some implicit assumptions
in the simulation model that could affect the rigorous descriptions of the components
modeled. Distinctly from ERP programming, the verification of agent-based simulation models
should not use design compromises or semantic differences or tradeoffs between the
concepts and performance. This is why we believe that some formal description of common
simulation model features can help to improve the model structure and validation results.

For the formal simulation framework of business company models, we first construct an
abstract architecture of a business company modeling also the general management decision
functions. The proposed abstract architecture is then inhabited with active entities – software
agents – implemented as our simulator MAREA. The abstract agent architecture proposed by
FIPA describes the structure and communication rules of multi-agent systems, but in a rather
static way. The multi-agent system proposed by Wooldridge (2009) which brings more
dynamics into the matter still does not provide tools for the analysis of processes and outputs
produced by agent interactions. Thus, in our abstract architecture, we exploit van der Aalst's
process mining approach (Van der Aalst, 2004; Van der Aalst, Reijers and Song, 2005; Van der
Aalst et al., 2009; Van der Aalst, 2011) through mapping our multi-agent model onto the
process mining framework. That is to say, we combine classic abstract agent architecture with
a process mining approach to make verification and validation feasible.

The last task is to verify that our multi-agent architecture is correct. Since this is in principle

software verification, the rigorous verification is very difficult and is one of the ultimate goals
in computer science. Thus we take another approach – software testing. Here the
“correctness” of our architecture consists of the process structure, the agent interaction and
fitness to real company data. Since we map the multi-agent architecture onto process mining
approach, the verification of the first two can be easily done by analyzing the result of
simulation (i.e. log) by process mining techniques. This “software testing via process mining
techniques” is the advantage of our formalization of multi-agent architecture in the form of
process mining framework. The fitness to real company data was validated by comparing the
simulation results to the real company data.

In the next sections we first briefly present some related works, their relevance to our
topic and the basic notions of a generalized company model. Section 2 introduces a formalized
simulation model of a trading company using REA-based ERP and software agents as dynamic
entities of the model. Next, a formalized approach to registration of processes in the
simulation run resulting in simulation run log is presented. Section 3 briefly describes the
method of model verification using functionalities of well-known ProM software as the
verification tool and some results of model validation using real data in a case study.
Concluding remarks present some discussion on the results and further research steps.

3

1. Basic Description of the Fundamental Notions
1.1. Software agents and process mining - short state of the art review

In order to enable the modeling of social behavior elements, we will use software agents.
Software agents can be defined as software modules that are based on the agents’ paradigm.
However, no unique definition of software agents could be found in the research papers.
Macal and North (2006) briefly defined the following basic features of agents:

 An agent is an identifiable, discrete individual governed by its behavior and
decision-making capability;

 An agent is situated in an environment with which it interacts with other
agents;

 An agent is goal-directed, autonomous and self-directed;

 An agent is flexible, and has the ability to learn and adapt her behaviors over
time based on her experiments.

These features of agents can be seen as justification of their use in modeling complex
economic environments like business.

Another definition of agents by Bellifemine et al. (2003) states that:

 Agents are autonomous - they can control their own actions and under
circumstances can take decisions;

 Agents are proactive - they do not react in response only, but they can have
own goal-oriented behavior and/or take initiative;

 Agents are social - they are able to interact with other agents in order to
accomplish their task and achieve the overall goal of the system.

A comprehensive approach to multi-agent models was presented by Wooldridge (2009).

His findings concern the single- and multi-agent definitions including formal specifications of
the agent behavior, communication and co-operation and other agent properties. An
important study on agents and their properties was presented by Odell (2010). He defines the
software agent as an autonomous entity that can adapt to and interact with its environment.
The notion of adaptation in this definition is important as it opens the way to formal agents
‘definition using formal notion of possible worlds as an environment description.

Each modeling and simulation task includes model verification and validation which can

be a very challenging issue. At least two main problem areas can be found here:

 The correspondence between the real data acquired from the real company

processes and the simulation outputs, (model validation)

 The model structure verification that is the test, if the realized model and

simulation corresponds with the abstract specification.

The validation task mainly concerns various real input and output data pre-processing
methods, the outputs of which are needed for model parameterization and control. The aim
here is to achieve sufficient quality of the model outputs allowing for eventual predictions.
The verification task can be seen as the core of the model test itself. Without a correct
simulation model structure consisting not only of “static” structures (the modeled structure
items) but also of correct process structures, their interrelations and roles played by the

4

process performers the correspondence between the simulation model output and real
company output data cannot be achieved. To ensure this verification, the third paradigm of
business process modeling can be advantageous – namely the principle of process mining
most comprehensively described by van der Aalst (2011). Process mining is a discipline
focusing on the extraction of information about processes from event (or transaction) logs.
Event logs contain events, each event refers to an activity (activity is a step in the process),
each event also refers to a case (i.e., a process instance), each event is instigated by an
originator, and events are totally ordered. An event log is then a collection of events. The
techniques, generally known as organizational mining, focus on the organizational perspective
of process mining. Alongside typical information such as event, case, activity or the time when
an event was performed, we can also find information about the originator (device, resource,
or person) who initiated the event (activity). The events from the log file can be projected onto
their resource and activity attributes. By using this approach, we can learn about people,
machines, organizational structures (roles, departments), work distribution and work
patterns.

In the simulation domain, the registered records of the simulation run give the modeler the
possibility to study the resulting simulation log. Such a log with the proper structure presents
the simulated process instances and their parameters such as process start and end
timestamps, the participants taking part in the processes, the interrelationships of the
processes in the model outputs and so on. Hence, it can be used for model structure
evaluation, and, moreover for evaluation of participant relations within the simulated
processes. Such participant relations are called “social networks”. Recently, a new approach
of social network analysis was presented by Slaninova, Martinovic, Sperka and Drazdilova
(2013) and Slaninova (2014). By extracting sequences from simulation logs, similar behavior
in process participants can be identified and latent ties between participant groups can be
visualized. Hence, this approach can be seen as an alternative to the social network analysis
performed by ProM (herein below).

The most prominent process mining tool is the open source software ProM, developed by
Eindhoven University of Technology1. ProM is a comprehensive bundle of process mining
software components using special formatted process log files as an input. It delivers various
types of control flow diagrams such as Petri nets, social network diagrams like Working
together, Subcontracting and others as outputs. Hence, the ProM outputs can be looked upon
as ideal tools for model structure verification. The Petri nets, generated from the simulation
log files, can be used for general simulation model structure verification, while the social
network diagrams obtained from the analysis can help to verify and correct the actual process
structure and process – participant relations.

However, using the software agents in the proposed model, the process logging ideas are to
be complemented by considerations on architecture of agents taking part in the processes. A
generalized approach using agents’ formal description helps to avoid model discrepancies.
Thus, our motivation was also to present a formalized approach to agent communication
which is one of the basic agent properties.

The presented formalization combines the basic approach to process mining by Van der
Aalst (2011) pp. 100 – 107 and the findings of Wooldridge, ibid, pp. 34 – 45) as far as agent

1 http://www.processmining.org/

http://www.processmining.org/

5

abstract architecture is concerned. In our solution it is proposed to represent the cases in the
process mining sense by sequences of states of the environment caused by messages among
agents. Then the messages of the agents are abstracted from in order to obtain suitable
representations of the cases (traces) in the process mining sense.

1.2. Basic company model

In our exploration we will use a generic company design model and concentrate on the
procurement and sales processes taking also some production and management questions
into consideration.

The company model based on the generic business company presented herein below was
a topic of other papers such as e.g. Vymetal and Schoeller (2012), Vymetal and Sperka (2013),
Vymetal and Sperka (2014) and its more detailed description is beyond the scope of this paper.

The generic company model is presented in Figure. 1.

Fig. 1: Generic company model
(Source: own)

The company consists of controlling, measuring and controlled subsystems. The controlled

subsystem sales realize the sales of products to customers. The customers communicate with
the sales representatives. At the request of the customer, the sales representative sends a
sales quotation which starts price negotiations. In case the negotiations end with an
agreement a stock or production order and sales order are generated. After the product is
shipped, the invoicing starts. The next controlled subsystem is the procurement subsystem.
Procurement can be looked upon as the mirror image of sales. The purchase representatives
place purchase requests to suppliers and after (possible) negotiation the purchase order is
realized and the product or its components are put into stock. Another controlled subsystem
is realizing marketing actions. If there is a production part in the company, it also belongs to a
controlled subsystem. The value movements within sales, procurement, inventory,

6

production and marketing are registered by the company ERP system. Using the ERP system,
the accountants regularly evaluate the company results characterized by Key Performance
Indicators (KPIs) and report the differences to management – the controlling subsystem.
Based on KPI developments, the managers take decisions in order to keep the company
system at the proximity of budgeted targets that is, in this sense the management realizes the
back loop function of the management loop.
This simple model can be used for modeling at a higher level of differentiation. So, e.g. the

modeling concentrates on sales process and negotiation modeling, customer decision

modeling, procurement modeling etc. In Figure 2, an excerpt of the generic model depicting

the sales process is presented.

Fig. 2: Partial model – the sales process
(Source: own

The customer sends a sales request to the company represented by a sales representative
asking for a product and a quantity to be offered. The sales representative then sends a sales
quotation with some price. The customer decides whether to accept or reject the quotation.
The decision is based on a decision function. There are several possibilities how to define a
decision function. Basically, the decision function can be formally described as a function
mapping various quotation prices and other parameters such as customer budget, customer
product preferences, market conditions, sales representative ability to sell, quoted quantity,
etc. to decision from {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡, 𝑟𝑒𝑣𝑜𝑘𝑒}, where revoke is generated in case the
negotiation time limit is exceeded.

In order to get a clear simulation model semantics, we define the negotiation formally:
Let decision domain DD be a set of tuples
〈𝐼𝑡, 𝑃𝑟, 𝑡, 𝑃𝑓 〉 (1)

𝑤ℎ𝑒𝑟𝑒 It − quoted product, Pr− 𝑞𝑢𝑜𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒, 𝑡 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑
 𝑃𝑓 = {𝑝𝑓1, 𝑝𝑓2 …𝑝𝑓𝑛} 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑛 ∈ ℤ,
𝑛 ≠ 0 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.

As examples of parameters used for decision we can mention e.g. sales representative
ability to sell or customer preferences. Then the customers’ decision function can be defined
as
𝐴𝑐𝑐𝑒𝑝𝑡: 𝐷𝐷 → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡, 𝑟𝑒𝑣𝑜𝑘𝑒}

7

𝐴𝑐𝑐𝑒𝑝𝑡(〈𝐼𝑡, 𝑃𝑟, 𝑡, 𝑃𝑓 〉) = {
𝐹(〈𝐼𝑡, 𝑃𝑟, 𝑃𝑓〉), 𝑖𝑓 𝑡 < 𝑡𝑚𝑎𝑥

𝑟𝑒𝑣𝑜𝑘𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐹(〈𝐼𝑡, 𝑃𝑟, 𝑃𝑓 〉) → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡} (2)
where 𝑡𝑚𝑎𝑥 is the set limit of the customer to wait a quotation. If the sales quotation is

rejected (Accept = reject), the sales representative sends a new quotation with a new price.
The price reduction rule is also a function, in this time based on the company general sales
rules.

In case the sales quotation is accepted, the sales order is realized. The formalized price
negotiation model defined in equations 1 and 2 is presented in Figure 3.

Fig. 3: Price negotiation
(Source: own

Generally, a similar negotiation takes place in the procurement subsystem. The role of the
customer is played by the purchase representative, while the role of the sales representative

8

is played by the suppliers. The purchase representative decision function is similar to the
customer decision function. The instigation for the purchase request is a message from the
ERP system. (Product reorder level and quantity)

The management takes its decisions based on the KPIs. KPIs represent the current state of
the company. They show the “score” of the company at a certain point in time. Additionally,
companies have their own target KPIs. Managers determine actions in order to achieve the
target KPI at the end of every period. The target KPI at a company is fixed (at least for a certain
duration, e.g. one year). So the manager compares the KPI at every period to the target KPI
and decides the management action. Examples of KPIs are e.g. turnover, gross profit, profit.
By management decisions, the differences between the KPIs and target KPIs are then mapped
into company operational targets such as sales purchase limit price, marketing actions
parameters decision on sales representatives’ education and others. These decisions have a
direct impact on sales and purchase in case of limit prices, while in other cases such as
education or marketing they influence the process indirectly. So e.g. education can improve
the sales or purchase representative ability to sell or to buy which causes changes in the
parameters of the decision functions of customers and purchase representatives leading to
the negotiation of other prices. The marketing action can improve the preferences of the
customers – the next parameter of the customer decision function.

To define this part of the simulation model semantics following formal statements are
presented:

Company target KPIs are represented as a tuple of reals 〈𝐾𝑃𝐼1, 𝐾𝑃𝐼2, …𝐾𝑃𝐼𝑗〉

(e.g. profit, revenue, gross profit〈30000, 800000, 60000〉). The fulfillment of KPIs is
evaluated at certain time-points. This is represented by a function from time-point to a tuple
of reals.

Let 𝐾𝑃𝐼: 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 → ℝ𝑗
be a function assigning a tuple of real numbers whose coordinates represent each KPI

member at a given time-point. For example, assume we have in April profit = -100000, revenue
= 1000000, gross profit = 50000. This is formally represented as𝐾𝑃𝐼(April) =
〈−100000,1000000,50000〉, where the first coordinate corresponds to profit, the second to

revenue and the third to gross profit. We denote the domain of KPIs as 𝒦.
Let 𝐴𝐶𝑚𝑛𝑔 be a set of management actions

(e.g. decrease sales limit price, educate sales representatives, start advertising)
By comparing KPI and targetKPI values, the manager makes decisions such as
𝑀𝑛𝑔(𝐾𝑃𝐼, 𝐴𝑝𝑟𝑖𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝐼) = {𝑠𝑡𝑎𝑟𝑡 𝑎𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑖𝑛𝑔, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑎𝑙𝑒𝑠 𝑙𝑖𝑚𝑖𝑡 𝑝𝑟𝑖𝑐𝑒}

So the signature of the management decision function is

𝑀𝑛𝑔:𝒦 × 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × ℝ𝑗 → 2𝐴𝐶𝑚𝑛𝑔 (3)
The rule to choose management actions can be formalized by logical formulas. For

example, let us consider the action 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑎𝑙𝑒𝑠 𝑙𝑖𝑚𝑖𝑡 𝑝𝑟𝑖𝑐𝑒. Let us use following acronym
for the action: 𝑝. Then the formula 𝜑𝑑𝑠𝑙𝑝 for the action would be:

𝜑𝑑𝑠𝑙𝑝 = 𝐾𝑃𝐼(𝑡)𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 > 500 ∧ 𝐾𝑃𝐼(𝑡)𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 < 5000 (4)

Likewise, we have formulas 𝜑𝑎 for each management action 𝑎. Then the management
function 𝑀𝑛𝑔 can be defined as:

𝑀𝑛𝑔(𝐾, 𝑡, 𝐺) = {𝑎 | 〈𝐾, 𝑡, 𝐺〉 ⊨ 𝜑𝑎 𝑎𝑛𝑑 𝑎 ∈ 𝐴𝐶𝑚𝑛𝑔}, (5)

where 𝐺 means goal – target KPI). The definition of the expression 〈𝐾, 𝑡, 𝐺〉 ⊨ 𝜑𝑎 is
straightforward.

It is obvious that such model uses some elements of social behavior described herein
above. Due to modularity of the model, other modeled items with various behaviors can be

9

included. So e.g., it could be possible to model overhead costs depending on revenue volumes.
Last but not least, it could be possible to include some disturbances from the company
environment affecting the decisions of the customers and suppliers.

2. Simulation model of the generic business company.

2.1. The multi agent simulation model

The formulation of the generic model presented in the section 1.2. is only the first step to
company simulation. For the simulation we divide the generic model into three parts:

The ERP part. This part of the model serves for the economic events registration. From the
registered values, the company KPIs can be calculated. The ERP part can also serve for the
registration of other activities performed by the active participants of the business processes.

 The dynamic part. This part of the model is realized by software agents, which
simulate the activities that would be done by human beings in the real process.
This part also includes the social part of the model as the software agent
parameters include their preferences and decisions as well as the communication
among the agents generally.

 The databases. The files containing the local and global properties of agents, the
company budgets, targets, and KPIs and the agent script codes themselves.

Now we inhabit the generic company model presented in Figure 1 with software agents.
For this, each flat square in Figure 1 with process description is substituted by a software agent
type. The simulation model is presented in Figure 4.

Fig. 4: Simulation model of a business company
(Source: own)

Note, that the general participant types such as Customers and Sales representatives in
Figure 1 were substituted by agent types and their instances. The simulation model was also

10

complemented by the runtime parameters of the agents. The REA type ERP implementation
makes it possible to run simulations in very short runs due to the REA properties which enable
to avoid double entry bookkeeping, accelerating thus the whole simulation run.

2.2. Software agents and process registration

We will start with an intuitive description of notions that will be used further on. We will
examine the processes of a trading company. The procedure is explained in the sales process,
the main part of which is negotiation on the price as presented in Figures 2 and 3 and defined
in Section 1.2. A simple intuitive negotiation log example is presented in Table 1 resembling
the schemes presented in Figures 2 and 3.

However, it actually shows a small part of concrete activities generated in a model run.
What can be deduced from the Table 1 content? We can assume that the log consists of events
data which are related to a single process (instance of price negotiation). Let us call the process
instance a case. In Table 1 we see the numbered case (Case ID =10002) with time stamps and
other attributes. Case 10002 consists of events related to corresponding activities (presented
here as messages) between customer 45 and Sales representative, Peter Hanson.

Tab. 1: Simple negotiation log
Case

ID

Mes-

sage

ID

Respo

nse to

Message

type

Message properties Message content

 Sender Reci-

pient

Send

time

Read

time

Qty

of

lines

Li-

ne

Nr

Product Qty Price

10002 10002 n/a Request

for quota-

tion

Cust 45 Peter

Hanson

020614

9:15

020614

18:06

1 1 UTP cable 76 m n/a

10002 10006 10002 Quotation Peter Hanson Cust 45 020614

18:08

020614

18:09

1 1 UTP cable 76 m 11,25

10002 10043 10006 Quote

rejection

Cust 45 Peter

Hanson

050614

19:09

050614

21:03

1 1 n/a n/a n/a

10002 10071 10043 Quota-

tion

Peter Hanson Custr 45 070614

10:31

070614

13:41

1 1 UTP cable 76 m 8,38

10002 10075 10071 Quote

accepta-

tion

Cust 45 Peter

Hanson

070614

13:50

070614

14:56

1 1 UTP cable 76 m 8,38

10002 10078 10075 Sales

order

Peter Hanson Accoun

tant

070614

14:56

070614

23:47

1 1 UTP cable 76 m 8,38

Source: own

The activities referring to the case in Table 1 are represented by instances of message
types Request quotation, Quotation, Quote rejection, Quote acceptation and Sales order. Table
1 also shows that the messages and hence the corresponding activities are ordered. The
ordering information delivered by time stamps is necessary in order to discover control and
message flow in the model. The event information presented in Table 1 includes some other
information items. The time stamp information was already mentioned here. Other pieces of
information such as message contents, the sender and recipient of the message are also
presented here. Generally, each event can be complemented by related properties (also called
attributes).

The events presented in Table 1 also refer to participants – the agents taking part in the
activities. Such participants are shown there as Customer and Sales representative. We

11

assume that the same types of events have the same sets of attributes. It is obvious that the
attributes of the events like e.g. the Customer and Sales representative id, the time stamp,
the message id and the message types (understood here as activities) need to be brought into
a more readable structure, but the figure give a good idea of the notions needed in the process
log.

Based on Figures 2 and 3 and also on Table 1, we can make similar assumptions as
researchers in process mining (van der Aalst, 2011, p.99 and further).

 A process consists of cases that can be logged in an event log.

 A case consists of events. Each event relates to exactly one case.

 Events within a case are ordered.

 Events can have properties called attributes such as time stamp, participant, activity
and others

All events should be related to a single process, like e.g. an instance of price negotiation
resulting in a sales order. Each event in price negotiation is related to a unique process
instance (case) only in order to keep the log unambiguous. Each event is related to an activity
pertaining to the activity set of a participating agent type. A finite sequence of events
pertaining to one case such that each event occurs only once is called a trace in process mining
research. Thus, our assumptions are typical for process mining procedures. Note that each
event has one unique label – the activity ID to which the event is actually referring. The
ordered set of traces containing the records of all activities pertaining to all cases in the
simulation can be intuitively called an event log. Thus, each event log registers a finite number
n>0 of cases. Each case i consists of a finite number k>0 of events. The events are sequentially
ordered. The formalized “footprint” of each case forms a trace.

The formalization of various process mining notions was sufficiently done by Van der Aalst
(ibid), and we will use it in our further reasoning.

The structure of the agent activities, (related to events), and the overview of our
assumptions regarding their logging is presented in Figure 5.

12

Fig. 5: Event log, cases, events, trace
(Source: own

However, unlike process mining, our intention is to log the activities of the agents in order
to verify the simulation model structure later. While the typical process mining approach takes
various log files from the existing processes or produces such files from information system
database tables as inputs, our approach concentrates not on existing process analyses, but on
agent communication within one simulation run in order to verify the simulation model
proposed presented in Fig. 4. For this we need another type of inputs than a real process log.
The basic idea is that the activities performed by the agents in the model can be
complemented by messages representing the outputs of agents’ actions – mostly the
requirements for the activities to be performed by other agents. The communication and co-
operation of agents is the basic idea of the agent paradigm. So, e.g. the agent Customer 45
decides to ask for a sales quotation from the agent Peter Hanson. The result of the customer’s
decision to buy something is a message of the Request for quotation type (message instance
ID 10002). Peter Hanson prepares the quotation and sends the message of Quotation type as
a result of his activity, (message instance ID 10006). The approach using messages as activities
(events) representation within cases has an important impact on the log structure. First, any
message has a sender and a receiver. So the activity 10002 Request for quotation has a sender,
Customer 45 and a receiver, Peter Hanson. Second, any message is characterized at least by a
sending time (time stamp) and read time (time stamp). Of course, there could be more time
stamps such as receive time, processed time etc. Third, any message must have an attribute
“Response to message” showing the message that originated the actual message, or showing
an empty set ⊘(in Table 1 marked as n/a). Each message must have an attribute Case ID
connecting all messages (events) to one case. The usage of messages as task representation
is a major distinction to the process mining concepts defined by other process mining
researchers, who use the transactional life cycle model. The main advantage of the presented

13

approach is that we can directly show communications among process participants – the
agents.

Now, we present a basic formalization of the event log principles.
Each agent instance lives in her environment and reacts to the changes of state happening

there (instigation events). No parallel activities are running inside the agent once a response-
to-instigation event was started. Each response process has one start point and one end point
(“sink”), thus, the set of agents’ interactions can be looked upon as a workflow net. In such a
case, the environment of an agent can be presented as a finite set of discrete, instantaneous
states w2.

 𝑊 = {𝑤0, 𝑤1, … . 𝑤𝑛}, (6)
where n is the last state index of the set or, in other words, |𝑊|= n +1. The agent instances

are grouped in agent types Ai (cf. herein below).
Each agent instance of an agent type communicates with at least one instance of a

different agent type. As we already mentioned, we are using the notion of message/action
instead of event or task. From now on, we will only use the notion of message.

Each agent type Ai has a finite set 𝑀𝑒𝐴𝑖
of possible message types representing actions

available to her. As the actions of the agents transform the state of the environment and as
they are represented by messages, the changes of the environment are also connected with
the messages. The message types of the agent types Ai are considered to be disjointed.

𝑀𝑒𝐴𝑖
= {𝛼1, 𝛼2, … 𝛼𝑝} , (7)

where 𝑝 means maximal index of message types available to an agent type Ai.

The agent instances 𝑎 of agent type A respond to the impulses from their environment by

means of a series of message instances from their sets 𝑀𝑒𝑎 ⊆ 𝑀𝑒𝐴, (the set of agents’ a
message types {𝛽1, 𝛽2, …𝛽𝑛} , 𝑛 ≤ 𝑝 does not necessarily include all message types of its
agent type) depending on the state of the environment.

Such a message type can be e.g. “request for quotation”, “quotation acceptation”,
“quotation revoked” etc. for the customer agent type and “quotation”, “sales order” etc. for
the sales representative agent type.

Formally, for one agent type instance, the series of environment state changes ca

connected with message instances 𝑏0, 𝑏1, … 𝑏𝑛 is represented as:𝑐𝑎 =
 𝑤0 𝑏0⃗⃗ ⃗⃗ 𝑤1 𝑏1⃗⃗ ⃗⃗ 𝑤2 𝑏2⃗⃗ ⃗⃗ 𝑤3 … . 𝑏𝑙−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑤𝑙, (8)

where 𝑏𝑖is an instance of some 𝛽𝑗 ∈ 𝑀𝑒𝑎

and 𝑤 are here possible states of environment. (cf. run in Wooldridge, ibid).
However, setting the scene in which several agents take part, we have to take the

messages of more agent types into consideration.
Let 𝐴 = {𝐴1, 𝐴2 , ……𝐴𝑘} be a set of all agent types in the model.
Let ℳ𝑒 = 𝑀𝑒𝐴1 ⊕ 𝑀𝑒𝐴2⨁…⨁𝑀𝑒𝐴𝑘 be a set of possible agent type interactions

realized by messages where ⊕ is the direct sum of sets.
Let 𝑀𝑒𝑐 ⊆ ℳ𝑒 be a subset of possible messages among agent types (e.g. within a sales

negotiation) appearing in case 𝑐.

𝑀𝑒𝑐 = {𝑑0, 𝑑1, ……… . . 𝑑𝑚−1}

2 We use the letter w in order to keep a symbolic connection to modal logic formalisms, which use the notion of

possible worlds w.

14

Then the case 𝑐 can be seen as a series of state changes caused by messages of agents
taking part in the case

𝑐 = 𝑤0 𝑑0⃗⃗⃗⃗ ⃗ 𝑤1 𝑑1⃗⃗⃗⃗ ⃗𝑤2 𝑑2⃗⃗⃗⃗ ⃗𝑤3 … . 𝑑𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑤𝑚, (9)

where 𝑤s are now possible worlds of all agents.
Each business negotiation can have a different outcome depending on message sets used

by agent instances involved and message contents. Please note, that the messages exchanged
among the agents and the values of message attributes depend on the system history and
specific agents’ decision functions such as customer decision function defined by equation 2.

Intuitively, it is obvious that the set of actions executed by agent type instances and
represented by corresponding messages adequately defines the case for process mining by
van der Aalst and such messages in one case can be looked upon as labeled events within one
case.

Thus, in principle, the basics of agent abstract architecture (by Wooldridge) perspective
can be combined with the basics of process mining (by Van der Aalst). This makes it possible
to formalize the logging of the agent activities in the log files.

Definition 1 (case, event, attribute).
Let 𝜇𝑎 be the set of all possible messages, corresponding to possible participants (agent

types) actions. Message instances 𝑚𝜖 𝜇𝑎are identified by unique message identifiers
(message ID) and referred to by various attributes such as message name, agent sender and
receiver instances, time stamps etc. A series of actions sequentially ordered by time stamps,
represented by agents’ messages and performed by various agent type instances constitute
cases. Each case is started by one or more messages from the environment by the agent –
instigator (e.g. customers’ request for quotation). On instigation, one or several agents –
performers can react. A typical reaction of more than one agent can happen in e.g. purchase
negotiation. Here, the purchase representative sends a purchase quote request (instigation)
and more suppliers can react with their quotations. Similarly, if the management agent
decides on sales representative education, she sends a message to all sales representatives,
which is then reacted to by the agents – sales representatives.

Let ℘ be a set of all possible cases (represented by case identifiers). Each case
𝑐𝜖℘ corresponds to a specific process instance and can have its own attributes. At least two
attributes are needed for a case – the case ID and the trace. Let all events in cases be
represented by messages identified by message identifiers. All messages have their own
attributes.

The following standard message attributes will be used further:3

 #𝑎𝑔𝑒𝑛𝑡(𝑚) – the tuple of the agent instances associated to the message m (e.g. Sales

representative Peter Hanson, Customer45),

 #𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) – the message type of m associated(referring) to event (e.g. Sales

Quotation)

 #𝑡𝑖𝑚𝑒(𝑚) – the tuple of the time stamps associated to m (e.g. message sent, message
received…).

3 We are using standard notation of Van der Aalst

15

 #𝑐𝑜𝑛𝑠𝑡(𝑚) – the tuple of message constant fields associated to message m (e.g.
product, price etc.),

 #𝑟𝑒𝑠𝑝(𝑚) - the message ID originating the message m (e.g. #𝑟𝑒𝑠𝑝(𝑚) =10043 –

response to Quote rejection with ID=10043)

We could use several other attributes, but for our assumptions, we consider the presented
ones sufficient.

Definition 2 (trace, event log). (Van der Aalst revisited)
For any case 𝑐𝜖℘ there exists a special mandatory attribute - trace, #𝑡𝑟𝑎𝑐𝑒(𝑐) ∈

 𝜇∗
𝑎

, where 𝜇∗
𝑎
 is a set of all finite message sequences over 𝜇𝑎. Thus, a trace is a finite

sequence of messages (representing events) 𝜎 ∈ 𝜇𝑎
∗ (with corresponding attributes) such that

each message ID appears only once, that is, 𝑓𝑜𝑟 1 ≤ 𝑗 < 𝑘 < |𝜎 |: 𝜎(𝑗) ≠ 𝜎(𝑘).
According to this definition, taking (6) into consideration, we note that a trace of one case

𝑐 is

 #𝑡𝑟𝑎𝑐𝑒(𝑐) = 〈𝑑0, 𝑑1, … . , 𝑑𝑚−1〉 and e.g.

(see equation 9),

 #𝐼𝐷(𝑐) = 10002 see Table 1.

The activities/messages of agents can be recorded in an event log.
An event log is a set of cases 𝐿 ⊆ ℘ such that each message (representing event and

identified by its message ID) appears at most once in the log. As messages and cases are
represented by unique identifiers, we can point to a specific case or specific message within
the case as seen in Figure 2.

Using this formalism, adapted after van der Aalst, we can describe the event logs produced
by agents without using a specific syntax.

In Table 1 we presented one case as a part of an event log.

Here #𝑡𝑟𝑎𝑐𝑒(10002) = 〈10002,10006,10043,10071,10073,10078〉

(Precisely, this should be #𝑡𝑟𝑎𝑐𝑒(𝑐) = 〈𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5〉 where #𝐼𝐷(𝑐) =
10002, #𝐼𝐷(𝑑0) = 10002, #𝐼𝐷(𝑑1) = 10006,….)

Using various attributes in the log, we can obtain various results. Using message ID
attributes, we can obtain Petri nets, or workflow nets, using agent attribute we can discover
some type of social net etc. Both mentioned results, namely the Petri net and the social net
can then be used for model verification.

3. Simulation model verification and validation: Case study

3.1. General description of verification and validation.

The verification and validation of the proposed model was performed in three steps:

a) Verification of the model structure and main functions – the test whether the
modeled entities correspond with the abstract architecture presented in Section 2.
Here, the verification of the customer and purchase representative decision
functions (equation 2) and negotiation procedure was the main task. For the
verification we used the ProM6 software alpha algorithm in order to receive the

16

corresponding Petri net showing the negotiation procedure. As the input for this
procedure the message log from the model was used.

b) Verification of the model dynamics – namely the behavior of the agents
representing the real entities of the modeled reality. The simulation of the social
networks of ProM6 Software was used as a verification tool. Here again, the
message log was used.

c) Model validation – the test whether the model output data correspond with the
real data delivered by the modeled company.

Only after the structural verification and the simulation outputs – real data comparison
has been done, the verification of the management decisions based on the management back
loop principle mentioned in section 1.2 would be possible. However, this verification is beyond
the scope of the presented results, as this part needs extensive analysis of the management
procedures in the modeled company and in reality, it is already the part of the prediction and
management support task which could differ substantially in real companies.

The formalism presented in Section 2 was implemented in the MAREA simulation
framework presented in several papers before (e.g. Vymetal and Schoeller, 2012; Vymetal and
Sperka, 2014). The customer and purchase representative decision function was based on
Marshallian demand function and customer utility function using Cobb-Douglas preferences
backed up theoretically by Vymetal and Jezek, 2014. The decision function based on global
simulation parameters used by i-th customer was defined as follows:

xi = αi
∗ ∗

mi

Px
, (10)

where

xi is the requested quantity (units),

αi
∗ - i-th customer preference for the product expressed as a randomized global preference

which was defined as product market share,

mi – i-th customer budget expressed as a randomized global budget parameter,

Px – quoted price per unit.

The decision function in simulation script code was expressed as:

…

If !Sales quote line.exists(Quantity>Item.Market share*Budget constraints*Preferences/Price)

 Accept quotation

 Set budget constraints = Budgets constraints – Quantity*Price

…

The real data used for the model validation represents one year of sales statistics of a
medium sized company selling UTP cable (sales unit in meters). The main characteristics of
the real data compared to simulation outputs are presented later in Table 3.

The MAREA simulation global parameters are presented in the following Table 2. Please
note, that the management function of the model was switched off in order to get “raw”
output data.

17

Tab. 2: Global parameters of the simulations
Simu-
lations
teps

Custo-
mer
count

Sales
repre-
senta-
tives

Purchase
repre-
senta-
tives

Global budget
(randomiza-
tion base) of
Customer, CZK

Max
quantity
sold, m

Starting
sales
price,
CZK/m

Product
market
share

365 100 1 1 5500 305 7,90 9%

Source: own

Several simulation series were produced during verification and validation. Each
simulation series consisted of ten simulation runs. For each simulation series, the average
values of simulation outputs presented in Table 3 were calculated. The MAREA framework
was changed to produce standard XES file registering messages among agents as process
outputs in simulation logs as derived in section 2.1. The simulation logs were used as inputs
for ProM6. In ProM6, the Mining for Petri net using alpha algorithm was calculated in order to
present the model general workflow structure and to confirm the correspondence of the
simulated model structure with the abstract concept of the model. The agents’ behavior was
analyzed by means of ProM6 social network mining programs, namely the Handover of work,
Subcontracting and Working together social networks.

3.2. Process verification

For process verification we will assume that the company model presented in Fig. 4 can be
transferred into a Workflow net. The reason for this assumption is that our model describes
the life-cycle of the cases simulated in the simulation run. Workflow net is a subclass of a Petri
net with a dedicated source place (start) and a dedicated sink place (end) while all nodes are
on a path from source to sink places. We considered the process verified if:

a) The structure of the messages representing the processes is adequate to the
generic company model (Figure 4). In that sense we e.g. expect that the sequence
of the messages in the sales order case without price negotiation should be: Sales
request – Sales quote – Sales quote acceptation – Sales order.

b) For process verification we used the standard ProM6 alpha algorithm process
mining for Petri net. As shown in Figure 6 which presents an excerpt from the
whole Petri net diagram as far as price negotiation is concerned, the simulation
respects the expected workflow as defined in equations 1 and 2 and Figure 3. Thus,
in our opinion, the process structure corresponds with the abstract company
model. In our case, we made a check manually. However, using more sophisticated
techniques, such as producing a reachability graph, finding deadlocks or livelocks,
automated check can be done. Several analytical tools such as Woflan4, or some
analytical tools of ProM6 software are available. However, in our test the
soundness of the resulting Petri net was not tested, as there were at least two
domains modeled in one simulation test what would lead to unsoundness of the
resulting workflow net. In further research, this type of test would be replaced by

4 Related papers at: http://www.win.tue.nl/woflan/doku.php?id=publications

18

Woflan test and separate modeling of the sales and procurement domain will be
done in order to produce a process log in the sense of workflow net soundness.
Please note, that in the whole model, other activities are started such as bonus
payment, production request is sent to the production line manager after
successful negotiation. Production can result in other purchase requests in case of
low stock. Also, in order not to complicate the Figures 6 - 8, the management back
loop function was switched off in the simulation.

Fig. 6: Model verification - The price negotiation structure as a part of resulting Petri net
(Source: own)

3.3. Agents’ behavior verification

The aim of the agents´ behavior verification was to find out, whether the agent instances
behave correspondingly to their parent agent types behavior defined in the model. Thus the
task of the verification consisted of finding the agent clusters in which the agent entities with
the expected behavior were grouped. For this, the social network analysis of the simulation
log was performed. The social network analysis performed from transaction logs is a part of
ProM6 software package. A twofold approach was applied. First, in order to find whether the
model follows the causality between the process steps, we applied the Handover of work and
Working together metrics for finding the social network. Both types of social networks are
described in detail in Van der Aalst, Reijers and Song (2005). The main idea of Handover of
work metrics is to find out, whether there is a handover of work between two entities (agents
in our case) that is, if there are two subsequent activities where the first activity is performed
by agent ai and the second is completed by agent aj.. In this case we say there is a handover of
work from 𝑎𝑖 to 𝑎𝑗. The Handover of work metrics allows the checking of the model logic at

19

the agent instance level. Please note, that in our model we do not consider the connections
among the customers (such as e.g. information about the prices offered running among the
customers with the aim to further improve the price negotiation results). In this case the
Handover of work social network should not show any links among customers. Figure 7 shows
the result. There are two separate clusters in the social network - the sales cluster and the
procurement cluster.

The sales representative (in the center of the customers) hands the work over to the
production line manager in case of the quotation acceptance. In the case of low stock, the
purchase representative asks for product delivery from vendors. But which quotation was
successful is not shown in this network. For this, the working together social network is to be
used. However, the Handover of work as presented in this figure corresponds with the logic
of the simulation model.

Second, in order to check, whether the agents follow the abstract model which stipulates
for the agents to take part in the case as long as their contribution is needed, we used the
Working together metrics. Such metrics does not take causal dependencies in consideration;
it simply counts how frequently the agents work together on cases. As the model expects that
all relevant agents take part in one case if necessary (e.g. the purchase representative has to
provide for goods to be sold and the supplier has to deliver) the resulting social network
should not contain singleton agent entities within the network. The result is presented in
Figure 8.

Fig. 7: Handover of work social network
(Source: own)

20

 Fig. 8: Working together social network
(Source: own)

In this case we can see two groups of customers – those who accepted the quotation and

thus triggered the production line and the second group, those who were in negotiation with
the sales representative but did not accept the quotation in time or at all.

Hence, it can also be concluded that in this case that the model functioned according to
expectations.

3.4. Comparison of real and simulated output data (model validation)

For model validation, the average simulation outputs were compared with real company
data. In individual series of simulation runs the global simulation parameters were slightly
changed in order to compare the average simulation outputs with the real company results.
Altogether 160 simulation runs were performed during the validation. The best matching
results showing average values for one year of simulation are presented in Table 3. The
following company KPIs and simulation outputs were compared:

 Company revenue resulting from UTP cable sales, CZK/year. We can see, that the
real and calculated values are comparable. (a difference of 3%)

 The gross profit (margin) on sales in %. Also here the calculated values are very
near the real ones.

 Average real selling price and the price resulting from the sales negotiation in the
model. The difference in this case is 9%. As the accepted price in the negotiation
depends on the parameters of the customer decision function (members of the
decision domains in equation 1 and 2), which were only partly estimated by the
modeled company, here we can see some potential for further research.

21

 The real number of orders per modeled year was also well approximated by the
simulation.

Tab. 3: Comparison of real and simulated output data

 Revenue/year CZK Margin % Average price/m, CZK Number of orders/year

Simulation 51388 52.91% 8.64 171

Real data 49972 53.66% 7.92 167

(Source: own)

Based on the comparison of real and simulated data, following conclusions can be drawn:

 The model correctly simulates the margin and average number of orders per year.

 The higher simulated revenue is probably caused by higher price per meter

 The higher price is caused by the preference used in the customer decision function
which most probably indicates that the market share of the company was under-
estimated in the real company data.

However, the simulated data outputs are close to the real data and thus, we consider the
model validation successful.

Conclusion

In this paper, an abstract multi-agent architecture of a trading company model using
formalized approach is proposed. The derived formalism extends the formal description of the
REA operational level proposed earlier. The abstract model is inhabited with active entities –
software agents and a method of registering their actions in a simulation run log is proposed.
This method combines basic notions of the abstract agent architectures with the methodology
of process mining. In the presented solution the process mining case notions are represented
by sequences of states of the environment caused by messages running among the active
elements of the model - the agents. The usage of messages as task representation is a major
distinction to the process mining concepts defined by other process mining researchers, who
use the transactional life cycle model. The main advantage of the presented approach is that
we can directly show communications among process participants – the agents. The derived
formalization can be seen as a general approach to multi-agent simulation analysis and
verification. The proposed solution is documented by a case study using real data of an
anonymous high technology company. Using the proposed formalization, the former MAREA
simulation environment was extended in order to reflect the behavior of the agents by means
of simulation log and to enable the verification of the simulation model. For the customer
decision function in the price negotiation, a method based on Marshallian demand function
and customer utility function using Cobb-Douglas preferences previously backed up
theoretically, was used. In model verification part, the simulation log was used as an input to
ProM6 process mining tool. The structure of the processes is checked by means of Petri net
created by the ProM6 alpha algorithm. The behavior of the agents was checked by analysis of
Handover of Work and Working together social networks calculated again by corresponding
ProM6 modules. This verification became feasible thanks to proposed formalization of multi-
agent architecture in terms of process mining framework. Finally, the model validation with
real data showed that the company model and the agent structure is viable and corresponds
to the real data company outputs.

22

There are several research topics still open. First, an automated model verification is to be
defined in using some more sophisticated Petri net analysis methods and corresponding
software. Second, data from more company types has to be collected in order to get more
generalized validations. These steps are planned for the future research.

References

[1] Aris, 2000. ARIS - Architecture of Integrated Systems. Workflow Management within
the ARIS Framework. http://www.pera.net/Methodologies/ARIS/ARIS.html. Accessed
22 July 2010.

[2] BPMN, 2011. Business Process Model and Notation, version 2.0.
http://www.omg.org/spec/BPMN/2.0/pdf. Accessed 3 December 2012.

[3] Barnett, M., 2003. Modeling & simulation in business process management.
http://news.bptrends.com/publicationfiles/11-
03%20WP%20Mod%20Simulation%20of%20BPM%20-%20Barnett-1.pdf. Accessed 21
December 2013.

[4] Baden-Fuller, & C., Haefliger, S., 2013. Business models and technological innovation.
Long Range Planning, 46(6), 419 – 426. ISSN 0024-6301.

[5] Bellifemine, F., Caire, G., Poggi, & A., Rimassa, G., 2003. JADE a White Paper, TILAB exp
„in search of innovation“, Vol.3, No.3,
http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf. Accessed 2 July 2009.

[6] Bucki, R & Suchanek, P., 2012. The method of logistic optimization in e-commerce.
Journal of Universal Computer Science, 18(10), 1238–1258. DOI: 10.3217/jucs-018-10-
1238.

[7] Dunn, C., L., Cherrington, O., J. & Hollander, A., S., 2004. Enterprise Information
Systems: A Pattern Based Approach. New York: McGraw-Hill/Irwin. ISBN 0-07-2404-29-
9

[8] Ericsson, H., E. & Penker, M., 2000). Business modeling with UML: Business Patterns at
Work. John Wiley &Sons, Inc. 166 p. ISBN: 0-471-29551-5.

[9] Gailly, F., & Poels, G., 2007. Towards Ontology-Driven Information Systems: Redesign
and Formalization of the REA Ontology. Witold Abramowicz (Ed.): Business Information
Systems, 10th International Conference, BIS 2007, Poznan, Poland, April 25-27, 2007,
Proceedings. Lecture Notes in Computer Science 4439 Springer 2007, pp. 245-259.

[10] Gordijn, J., & Akkermans, J., 2002. Value-based requirements engineering exploring
innovative e-commerce ideas. Requirements Engineering, 8(2), 114 – 134. ISSN: 0947-
3602.

[11] Hruby, P., 2006. Model/Driven Design Using Business Patterns. Berlin Heidelberg:
Springer Verlag. ISBN 3-540-30154-2

[12] Ito, S., & Vymetal, D., 2013).The Formal REA Model at the Operational Level. Applied
Ontology, Vol. 8(4/2013), 275-300. DOI: 10.3233/AO-140129

[13] Liu, Y., & Triverdi, S., 2011. „Survivability Quantification: The Analytical Modeling
Approach“. Department of Electrical and Computer Engineering, Duke University,

http://www.pera.net/Methodologies/ARIS/ARIS.html
http://www.omg.org/spec/BPMN/2.0/pdf
http://news.bptrends.com/publicationfiles/11-03%20WP%20Mod%20Simulation%20of%20BPM%20-%20Barnett-1.pdf
http://news.bptrends.com/publicationfiles/11-03%20WP%20Mod%20Simulation%20of%20BPM%20-%20Barnett-1.pdf
http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf

23

Durham, NC, USA, http://people.ee.duke.edu/~kst/surv/IoJP.pdf. Accessed 16 January
2012.

[14] Macal, C., & North, M., J., 2006. Tutorial on agent-based modeling and simulation, Part
2: How to model with agents, In: Proceedings of the 2006 Winter simulation
conference. http://www.informs-sim.org/wsc06papers/008.pdf. Accessed 20
December 2010.

[15] McCarthy, W., E., 1982. The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review (July 1982),
pp. 554-578.

[16] McFarland, D.A. & Gomez, C. J., 2014. Organizational Analysis. Pages: 1- 205.
http://service.sipx.com/service/php/inspect_document.php?id=x-06fd656e-b146-
11e3-b4ce-22000a90058c. Accessed 2 September 2014.

[17] Odell, J., 2010. Agent Technology: An Overview. October, Ann Arbor, MI, USA.
http://www.jamesodell.com/Agent_Technology-An_Overview.pdf. Accessed 23 May
2011.

[18] Slaninova, K., Martinovic, J., Sperka, R., & Drazdilova, P., 2013. Extraction of Agent
Groups with Similar Behavior Based on Agent Profiles. 12th IFIP TC8 International
Conference on Computer Information Systems and Industrial Management Applications
(CISIM). Lecture Notes in Computer Science pp. 348 – 357. ISBN 978-3-642-40925-7.

[19] Slaninova, K., 2014. User behavioral patterns and reduced user profiles extracted from
log files. 13th International Conference on Intelligent Systems Design and Applications,
ISDA, Article number 6920751, pp 289-294. DOI: 10.1109/ISDA.2013.6920751.

[20] Sperka, R., Spišak, M., Slaninová, K., Martinovič, J., & Dráždilová, P., 2013. Control Loop
Model of Virtual Company in BPM Simulation. Advances in Intelligent Systems and
Computing, 188, 515 – 524. ISSN: 2194-5357.

[21] Suchanek, P. & Vymetal, D., 2011. Security and Disturbances in e-Commerce Systems.
In: Proceedings of 10th International Conference Liberec Economic Forum. pp. 580 –
589. ISBN: 978-80-7372-755-0.

[22] Vandenbosche, P.E.A. & Wortmann, J. C., 2006. Why accounting data models from
research are not incorporated in DERP systems. Paper presented at the 2nd
International REA Workshop, June 25, Fira Santorini Island, Greece.

[23] Van der Aalst, W., M., P. 2004. Business process management: a personal view.
Business Process Management Journal, 10(2), 4, ISSN: 1463-7154.

[24] Van der Aalst, W., M., P., Reijers, H., A. & Song, M., 2005. Discovering Social Networks
from Event Logs. Computer Supported Cooperative Work, Vol. 14, Springer-Verlag. DOI
10.1007/s10606-005-9005-9.

[25] Van der Aalst, W., M., P. et al. Process Mining Manifesto. IEEE Task Force for Process
Mining, 2009.
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:process_mining_m
anifesto-small.pdf. Accessed 15 January 2014.

http://www.informs-sim.org/wsc06papers/008.pdf
http://service.sipx.com/service/php/inspect_document.php?id=x-06fd656e-b146-11e3-b4ce-22000a90058c
http://service.sipx.com/service/php/inspect_document.php?id=x-06fd656e-b146-11e3-b4ce-22000a90058c
http://www.jamesodell.com/Agent_Technology-An_Overview.pdf
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:process_mining_manifesto-small.pdf
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:process_mining_manifesto-small.pdf

24

[26] Van der Aalst, W., M., P. (2011). Process Mining. Discovery, Conformance and
Enhancement of Business Processes. Berlin Heidelberg: Springer-Verlag, Germany, XVI,
352 p. DOI 10.1007/978-3-642-19345-3.

[27] Vymětal, D. & Schoeller, C., 2012. MAREA: Multi-Agent REA-Based Business Process
Simulation Framework. In Conference proceedings, International Scientific Conference
ICT for Competitiveness. OPF SU, 2012. pp. 301 - 310. ISBN 978-80-7248-731-8.

[28] Vymetal, D. & Sperka, R., 2013. Virtual company simulation for distance learning. In
Distance Learning Simulation and Communication Proceedings. Brno: Univerzita
obrany Brno, pp.189-197. ISBN 978-80-7231-919-0.

[29] Vymetal, D. & Jezek, F., 2014. Demand function and its role in a business simulator.
Journal of Advanced Research in Management, Vol. V, Issue 1(9), Winter 2014, pp. 41 –
47. Doi:10.14505/jarm.v5.1(9).04

[30] Vymetal, D. & Sperka, R., 2014. MAREA – from an agent simulation application to the
social network analysis. Proceedings 18th International Conference on Knowledge-
Based and Intelligent Information &Engineering Systems – KES2014. Procedia
Computer Science 35, pp.1416 – 1425. DOI: 10.1016/j.procs.2014.08.198

[31] Weigand, H. & Elsas, P., 2012. Model-based auditing using REA. International Journal of
Accounting Information Systems, Vol. 13, issue 3, pp. 287-310.
doi:10.1016/j.accinf.2012.06.013

[32] Wooldridge, M., 2009. MultiAgent Systems: An Introduction, 2nd edition. Chichester:
John Wiley & Sons Ltd. ISBN 978-0-470-51946-2.

http://dx.doi.org/10.1016/j.accinf.2012.06.013

